
SSH-REVERSE-TUNNEL(1) User Commands SSH-REVERSE-TUNNEL(1)

NAME
ssh-reverse-tunnel - create robust reverse ssh tunnels or VPNs

SYNOPSIS
Usage: ssh-reverse-tunnel client [options]
or: ssh-reverse-tunnel server [options]
or: ssh-reverse-tunnel --help or --version (gives the full manual or version info)

Without --vpn, a set of TCP port forwards is set using the --ports options.

With --vpn, a VPN is set up using PPP over SSH.

Identical commands are run on both client and server sides, with the exception of the first argument being
"client" or "server" as appropriate.

OPTIONS
NOTE: All command-line options have analagous options available in the optional configuration file, which
defaults to /etc/ssh-rev erse-tunnel.conf.

Options common to all modes:
--client-mode-timeout time

Wait time seconds for a connection while in client mode

--configuration-file file
Use file as the configuration file instead of the default
(/etc/ssh-rev erse-tunnel.conf). If used, this option must be the first option after client or
server.

--remote-commands
check for remote commands, see the REMOTE COMMAND FEATURE section

--server-host server_host
The server hostname from the client’s point of view

--server-mode-timeout time
Wait time seconds for a connection while in server mode

--server-ssh-port port
The ssh port on the server (default is 22)

--server-user server_user
A user account on server_host

--ssh-extra-options string
Extra options string to be passed directly to ssh (remember shell quoting if string has
spaces in it)

--verbose Give verbose output

ssh port forwarding option:
--ports ports_string

where ports_string is one or more of the pattern
server_port:localhost:client_port separated by spaces

ssh-reverse-tunnel 0.5.3 January 2005 1



SSH-REVERSE-TUNNEL(1) User Commands SSH-REVERSE-TUNNEL(1)

where

server_port
is the TCP port to use on the server side

client_port
is the TCP port to use on the client side

For each pattern in ports_string, the server_port on the server is forwarded to the client_port on the client.

The same ports_string should be used on both client and server.

The ports_string patterns are actually passed directly to the ssh -R option. Note that "localhost" in the -R
command refers to localhost on the client side. A way to remember this is that the host in an ssh port for-
ward triplet is always relative to the port forward connection endpoint (as opposed to the ssh connection
endpoint).

Server mode options:
--client-host client_host

The client hostname from the point of view of the client

--client-user client_user
A user account on client_host

--server-host-client-alias host
An alias for server_host on the server to avoid ssh host key conflict (see section: EXAMPLE -
RESOLVING HOST KEY CONFLICTS)

VPN options:
--vpn Create a VPN tunnel over PPP instead of SSH port forwarding tunnel

--client-ssh-port port
The ssh port on the client (default is 22)

--client-vpn-address client_address
The client-side IP address will be client_address

--server-vpn-address server_address
The server-side IP address will be server_address

--client-pppd-command client_pppd_command
Execute client_pppd_command for pppd on client

--server-pppd-command server_pppd_command
Execute server_pppd_command for pppd on server

ssh-reverse-tunnel 0.5.3 January 2005 2



SSH-REVERSE-TUNNEL(1) User Commands SSH-REVERSE-TUNNEL(1)

DESCRIPTION
ssh-reverse-tunnel allows you to set up tunnels so that you can connect to a computer which doesn’t allow
incoming connections. This is done by using a "server" computer which does accept incoming connec-
tions. The "client" which doesn’t accept incoming connections connects to the server and sets up a reverse
tunnel. There are two ways to do this.

Method 1: ssh reverse tunnels (without --vpn option)
ssh’s rev erse tunnel feature (the -R option) can create reverse tunnels for specific TCP ports. The
advantage of this is that you can set up a service, such as sshd or imapd, easily and connect from
any host on the internet through a forwarded port on the server. The limitation is that only speci-
fied TCP ports are forwarded.

Method 2: VPN using PPP (with --vpn option)
A VPN (virtual private network) can be created using ssh and pppd if you have root access or sudo
access to pppd on both client and server. The advantage is that this is a full network interface with
all the power and complexity that entails. Be sure and see the section EXAMPLE - CREATING A
VPN for limitations with this approach.

ssh-reverse-tunnel is essentially a helper script, which will monitor the tunnel connection on both sides.
When either the client or server side can’t connect to the other side, it kills ssh and/or pppd on its side and
sets up a marker to tell the other side to restart. When the connection goes down, it complains to standard
output only once unless in verbose mode, so that the script can be run frequently by cron without filling up
the logs when the connection is down. It also reports once after a connection has been re-established.

PREREQUISITES
ssh-reverse-tunnel will be impossible to use if you don’t understand how to set up passwordless logins with
ssh. One place this is described:
http://www.debian.org/devel/passwordlessssh
Google for "passwordless ssh" is also a good way to find out how to do this.

EXAMPLE - BASIC REVERSE PORT FORWARD
Suppose host client_host is behind a firewall that only allows outgoing connections, but you want to be able
to ssh in to client_host from outside the firewall. To accomplish this, you will use server_host, which does
allow incoming connections on port 2222, and forward port 2222 on server_host to port 22 on client_host
using ssh reverse port forwarding. For this simple example, you only need a user account client_user on
client_host and a user account server_user on server_host.

First, set up passwordless ssh logins from client_user@client_host to server_user@server_host and run:

client_user@client_host$ ssh-reverse-tunnel client \
--ports 2222:localhost:22 \
--server-user server_user --server-host server_host

You can now log in to client_host by connecting to server_host port 2222 locally:

server_user@server_host$ ssh -p2222 client_user@server_host

EXAMPLE - ADDING MORE PORT FORWARDS
The following extends the example so far to also forward server_host port 2225 to client_host port 25:

client_user@client_host$ ssh-reverse-tunnel client \
--ports "2222:localhost:22 2225:localhost:25" \
--server-user server_user --server-host server_host

EXAMPLE - RESOLVING HOST KEY CONFLICTS
There may be a problem with connecting to server_host port 2222 on server_host, though. If you have an
ssh host key for server_host already, when you connect with the above command ssh will receive the host

ssh-reverse-tunnel 0.5.3 January 2005 3



SSH-REVERSE-TUNNEL(1) User Commands SSH-REVERSE-TUNNEL(1)

key from client_host because of the port forwarding. ssh will see that the host key for server_host doesn’t
match what it expects, and figure the key has changed because of a man in the middle attack, and will fail.
One way around this is to create an alias server_host_client_alias to server_host in the /etc/hosts file on
server_host, and then use the following to connect to client_host:

server_user@server_host$ ssh -p2222 client_user@server_host_client_alias

Another way that is less desirable, but may work if you don’t hav e root access on server_host is to use the
ssh option
"-oStrictHostKeyChecking=no". This will only work with passwordless login:

server_user@server_host$ ssh -p2222 -oStrictHostKeyChecking=no \
client_user@server_host

EXAMPLE - CONNECT FROM ANYWHERE
If you want to be able to login to client_host from any host, you might expect that the ssh -g option would
work, but it doesn’t (see Debian Bug #228064 at http://bugs.debian.org/cgi-bin/bugre-
port.cgi?bug=228064). Instead, add the line:

GatewayPorts yes

to the sshd configuration file (/etc/ssh/sshd_config on Debian) on remote_host. Be aware that this opens up
ALL ports forwarded by sshd on remote_host, so if you don’t want some other ports forwarded, you will
need to set up your firewall appropriately, or complain about the -g bug.

You can now log in to client_host from any host with:

any_host$ ssh -p2222 client_user@client_alias

where client_alias is an alias for remote_host to solve the host key collision problem described in the previ-
ous section.

EXAMPLE - CREATING A ROBUST TUNNEL
If the simple example above meets your needs, you should probably evaluate the autossh program,
described below in the SEE ALSO section. In my experience, when connection conditions are bad, the
sshd process on the server which is holding the reverse-forwarded port open may need to be restarted. This
currently requires root access on the server, see the LIMITATIONS AND BUGS section for the reason.

This script can be used to keep a tunnel up all the time if it is run regularly on both client and server via
cron. When used this way, the first tunnel in ports_string should always be back to the ssh port on
client_host, since this tunnel is used to test a round-trip ssh connection.

Continuing with the example, on client_host, cron should execute:

client_user@client_host$ ssh-reverse-tunnel client --ports 2222:localhost:22 \
--server-user server_user --server-host server_host

and on server_host, cron should execute (as root):

root@server_host$ ssh-reverse-tunnel server --ports 2222:localhost:22 \
--server-user server_user --server-host server_host \
--client-user client_user --client-host client_host \
--server-host-client-alias server_host_client_alias

Note that the second command is the same as the first with a few options added. The server command
given would also work on the client side, with the first argument changed from "server" to "client".

To run this example using a configuration file, you would set up the values in the configuration file as
above, then use the same configuration file on both sides. If all the options are set correctly in the configu-
ration file, you would just run:

client_user@client_host$ ssh-reverse-runnel client
and

ssh-reverse-tunnel 0.5.3 January 2005 4



SSH-REVERSE-TUNNEL(1) User Commands SSH-REVERSE-TUNNEL(1)

root@server_host$ ssh-reverse-tunnel server

Before setting up the cron scripts, the following should work without passwords:
client_user@client_host$ ssh server_user@server_host
root@server_host$ ssh -p2222 client_user@server_host_client_alias

EXAMPLE - CREATING A VPN
This is not the best way to create a VPN! It is however, the easiest way I know to create a semi-robust VPN
to a computer behind a firewall. You don’t need to change anything with your firewall or your NAT router,
for instance.

There are several downsides to this method. It works poorly for large transfers or for connections where
latency is important (like X, vnc, or shells). If the tunnel is restarted for whatever reason, any established
connections will be dropped. See http://sites.inka.de/sites/bigred/devel/tcp-tcp.html for the technical dis-
cussion of why this is a bad way to implement a VPN. OpenVPN is a much better solution for a serious
VPN that can be created for all situations where ssh-reverse-tunnel can be used and more. The only advan-
tage of this script over OpenVPN for creating a VPN is that it’s extremely easy to configure. Consider the
VPN mode of the script a demo or toy.

For this example, we’re going to create a VPN at IP 192.168.88.1 on server_host and IP 192.168.88.10 on
client_host. ssh-reverse-tunnel will be run as root on both hosts every two minute via cron.

1) Setup passwordless login from root@client_host to server_user@server_host.

2) Set up sudo so that server_user@server_host can run pppd. Add the line:
server_user ALL=NOPASSWD: /usr/sbin/pppd
to /etc/sudoers on server_host.

3) Run this command on the client to start the tunnel, and later set it up to run via cron every 2 minutes:
root@client_host$ ssh-reverse-tunnel client --vpn \
--server-user server_user --server-host server_host \
--client-user client_user --client-host client_host \
--client-vpn-address 192.168.88.10 --server-vpn-address 192.168.88.1 \
--server-pppd-command "sudo pppd"

4) Set up passwordless ssh login from root@server_host to client_user@192.168.88.10.

5) Run the command in step 3 on the server every two minutes via cron, but change the first argument from
"client" to "server".

MANUALLY RESTARTING THE TUNNEL
If you can’t get a connection from server_host to client_host, create the file /home/server_user/.ssh-reverse-
tunnel.restart.client_host on server_host. The next time ssh-reverse-tunnel is run for this tunnel on the
client side, it will see this file and restart the ssh tunnel. The restart marker file will be deleted by the client
side only after the tunnel is successfully restarted.

REMOTE COMMAND FEATURE
If the --remote-commands option is given in client mode, ssh-reverse-tunnel will look for the file
/home/server_user/.ssh-reverse-tunnel.command.client_host on
server_host and execute the contents on client_host using /bin/sh. This is useful for debugging, and possi-
bly other uses. The command file is deleted on server_host after it is executed.

WHAT’S GOING ON IN DETAIL
On the client side when run in client mode, the following occurs:

1) execute contents of the remote command file if needed (see REMOTE COMMAND FEA-
TURE)

ssh-reverse-tunnel 0.5.3 January 2005 5



SSH-REVERSE-TUNNEL(1) User Commands SSH-REVERSE-TUNNEL(1)

2) kill the client-side ssh tunnel process if the kill file exists (see MANUALLY RESTARTING
THE TUNNEL)

3) if the tunnel is already running, return with exit status 0

4) if the tunnel is not running, start tunnel

a) if the tunnel is not running after client_mode_timeout, abort with error message

b) remove the kill marker file on server_host if it exists

On the server side when run in server mode as root, the following occurs:

1) attempt to create a connection to the client through the tunnel, then through this connection con-
nect back to the server and create /home/server_user/.ssh-reverse-tunnel.server_con-
nect.client_host

2) if the the marker file hasn’t been created after server_mode_timeout:

a) kill the tunnel processes on the server

b) kill the client-side tunnel processes by creating the file on server_host described in the sec-
tion MANUALLY RESTARTING THE TUNNEL

FILES
/etc/ssh-reverse-tunnel.conf

Default configuration file location. Command-line options override anything here.

LIMITATIONS AND BUGS
Only one tunnel from a given client to a server can exist, although one server can have tunnels from multi-
ple clients. This shouldn’t be too much of a problem since one tunnel can have multiple port forwards.

Server mode requires root access. This is because netstat -lp doesn’t return the PID of port listeners to non-
root users, even if those users own the process which is listening on the port. A Debian bug has been filed
against this problem (http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=292453).

ssh-reverse-tunnel may only work using the GNU utilities, since it does things like pull the 7th column
from the output of netstat. I don’t hav e the ambition to test on non-GNU utilities, although I will accept
patches to make it more portable.

ssh-reverse-tunnel has only been tested with OpenSSH.

Report bugs to bugs@danielwebb.us.

AUTHOR
Copyright © 2005 Daniel M. Webb. This program comes with NO WARRANTY, to the extent permitted
by law. You may redistribute copies of this program under the terms of the GNU General Public License.
For more information about these matters, see the COPYING file.

SEE ALSO
autossh - http://www.harding.motd.ca/autossh/

Use like a normal ssh command, except autossh keeps the connection up

VPN PPP-SSH HOWTO on http://www.linuxdoc.org

OpenVPN - http://openvpn.net

A full-featured VPN that can be used in all the places ssh-reverse-tunnel can and more

ssh-reverse-tunnel 0.5.3 January 2005 6


